- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jiaxin (2)
-
Lyu, Yuefei (2)
-
Xie, Sihong (2)
-
Zhang, Xi (2)
-
Yang, Xiaoyu (1)
-
Yu, Philip S. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
User-generated product reviews are essential for online platforms like Amazon and Yelp. However, the presence of fake reviews misleads customers. GNN is the state-of-the-art method that detects suspicious reviewers by exploiting the topologies of the graph connecting reviewers, reviews, and products. Nevertheless, the discrepancy in the detection accuracy over different groups of reviewers degrades reviewer engagement and customer trust in the review websites. Unlike the previous belief that the difference between the groups causes unfairness, we study the subgroup structures within the groups that can also cause discrepancies in treating different groups. This paper addresses the challenges of defining, approximating, and utilizing a new subgroup structure for fair spam detection. We first identify subgroup structures in the review graph that lead to discrepant accuracy in the groups. The complex dependencies over the review graph create difficulties in teasing out subgroups hidden within larger groups. We design a model that can be trained to jointly infer the hidden subgroup memberships and exploits the membership for calibrating the detection accuracy across groups. Comprehensive comparisons against baselines on three large Yelp review datasets demonstrate that the subgroup membership can be identified and exploited for group fairness.more » « less
-
Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor DetectionLyu, Yuefei; Yang, Xiaoyu; Liu, Jiaxin; Xie, Sihong; Yu, Philip S.; Zhang, Xi (, International Joint Conference on Neural Networks)Social networks are frequently polluted by rumors, which can be detected by advanced models such as graph neural networks. However, the models are vulnerable to attacks, and discovering and understanding the vulnerabilities is critical to robust rumor detection. To discover subtle vulnerabilities, we design a attacking algorithm based on reinforcement learning to camouflage rumors against black-box detectors. We address exponentially large state spaces, high-order graph dependencies, and ranking dependencies, which are unique to the problem setting but fundamentally challenging for the state-of-the-art end-to-end approaches. We design domain-specific features that have causal effect on the reward, so that even a linear policy can arrive at powerful attacks with additional interpretability. To speed up policy optimization, we devise: (i) a credit assignment method that proportionally decomposes delayed and aggregated rewards to atomic attacking actions for enhance feature-reward associations; (ii) a time-dependent control variate to reduce prediction variance due to large state-action spaces and long attack horizon, based on reward variance analysis and a Bayesian analysis of the prediction distribution. On two real world datasets of rumor detection tasks, we demonstrate: (i) the effectiveness of the learned attacking policy on a wide spectrum of target models compared to both rule-based and end-to-end attacking approaches; (ii) the usefulness of the proposed credit assignment strategy and variance reduction components; (iii) the interpretability of the attacking policy.more » « less
An official website of the United States government

Full Text Available